Multi-view Anomaly Detection via Probabilistic Latent Variable Models

نویسندگان

  • Tomoharu Iwata
  • Makoto Yamada
چکیده

We propose a nonparametric Bayesian probabilistic latent variable model for multi-view anomaly detection, which is the task of finding instances that have inconsistent views. With the proposed model, all views of a non-anomalous instance are assumed to be generated from a single latent vector. On the other hand, an anomalous instance is assumed to have multiple latent vectors, and its different views are generated from different latent vectors. By inferring the number of latent vectors used for each instance with Dirichlet process priors, we obtain multi-view anomaly scores. The proposed model can be seen as a robust extension of probabilistic canonical correlation analysis for noisy multi-view data. We present Bayesian inference procedures for the proposed model based on a stochastic EM algorithm. The effectiveness of the proposed model is demonstrated in terms of performance when detecting multi-view anomalies and imputing missing values in multi-view data with anomalies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-view Anomaly Detection via Robust Probabilistic Latent Variable Models

We propose probabilistic latent variable models for multi-view anomaly detection, which is the task of finding instances that have inconsistent views given multi-view data. With the proposed model, all views of a non-anomalous instance are assumed to be generated from a single latent vector. On the other hand, an anomalous instance is assumed to have multiple latent vectors, and its different v...

متن کامل

Multi-view learning via probabilistic latent semantic analysis

Multi-view learning arouses vast amount of interest in the past decades with numerous real-world applications in web page analysis, bioinformatics, image processing and so on. Unlike the most previous works following the idea of co-training, in this paper we propose a new generative model for Multi-view Learning via Probabilistic Latent Semantic Analysis, called MVPLSA. In this model, we jointl...

متن کامل

Posterior Regularization for Structured Latent Varaible Models

We present posterior regularization, a probabilistic framework for structured, weakly supervised learning. Our framework efficiently incorporates indirect supervision via constraints on posterior distributions of probabilistic models with latent variables. Posterior regularization separates model complexity from the complexity of structural constraints it is desired to satisfy. By directly impo...

متن کامل

Latent Variable PixelCNNs for Natural Image Modeling

We study probabilistic models of natural images and extend the autoregressive family of PixelCNN models by incorporating latent variables. Subsequently, we describe two new generative image models that exploit different image transformations as latent variables: a quantized grayscale view of the image or a multi-resolution image pyramid. The proposed models tackle two known shortcomings of exis...

متن کامل

Posterior Regularization for Structured Latent Variable Models

We present posterior regularization, a probabilistic framework for structured, weakly supervised learning. Our framework efficiently incorporates indirect supervision via constraints on posterior distributions of probabilistic models with latent variables. Posterior regularization separates model complexity from the complexity of structural constraints it is desired to satisfy. By directly impo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1411.3413  شماره 

صفحات  -

تاریخ انتشار 2014